Solid State Relays
G3NA

Wide Lineup of General-purpose Solid State Relays with Applicable Loads of 5 to 90 A
• AC Output Relays with 75-A and 90-A output currents have been added to the G3NA Series.
• All models feature the same compact dimensions to provide a uniform mounting pitch.
• Built-in varistor effectively absorbs external surges. (except G3NA-D210B)
• Operation indicator enables monitoring operation.
• Protective cover for greater safety.
• Standard models certified by UL and CSA and -UTU models by TÜV. (except G3NA-410B, G3NA-420B, and G3NA-440B(-2))

Refer to Safety Precautions for All Solid State Relays.

Model Number Structure

Model Number Legend

G3NA-@@@@-@-@-@

1. Basic Model Name
 G3NA: Solid State Relay

2. Load Power Supply
 Blank: AC output
 D: DC output

3. Rated Load Power Supply Voltage
 2: 200 VAC or 200 VDC
 4: 400 VAC

4. Rated Load Current
 05: 5 A
 10: 10 A
 20: 20 A
 40: 40 A
 50: 50 A
 75: 75 A
 90: 90 A

5. Terminal Type
 B: Screw terminals

6. Zero Cross Function
 Blank: Equipped with zero cross function (AC-output models only)

7. Certification
 Blank: Standard models (certified by UL and CSA)
 UTU: Certified by UL, CSA, and TÜV

8. RoHS Conformance
 Blank: Non RoHS conformance
 2: RoHS conformance

For the most recent information on models that have been certified for safety standards, refer to your OMRON website.
Ordering Information

List of Models

<table>
<thead>
<tr>
<th>Isolation</th>
<th>Zero cross function</th>
<th>Indicator</th>
<th>Applicable output load (See note 1.)</th>
<th>Rated input voltage</th>
<th>Model</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phototriac Coupler</td>
<td>Yes</td>
<td>Yes</td>
<td>5 A at 24 to 240 VAC (See note 2.)</td>
<td>5 to 24 VDC</td>
<td>G3NA-205B DC5-24</td>
</tr>
<tr>
<td>Photocoupler</td>
<td></td>
<td></td>
<td></td>
<td>100 to 120 VAC</td>
<td>G3NA-205B AC100-120</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200 to 240 VAC</td>
<td>G3NA-205B AC200-240</td>
</tr>
<tr>
<td>Phototriac Coupler</td>
<td>Yes</td>
<td>(Yellow)</td>
<td>10 A at 24 to 240 VAC (See note 2.)</td>
<td>5 to 24 VDC</td>
<td>G3NA-210B DC5-24</td>
</tr>
<tr>
<td>Photocoupler</td>
<td></td>
<td></td>
<td></td>
<td>100 to 120 VAC</td>
<td>G3NA-210B AC100-120</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200 to 240 VAC</td>
<td>G3NA-210B AC200-240</td>
</tr>
<tr>
<td>Phototriac Coupler</td>
<td>Yes</td>
<td></td>
<td>20 A at 24 to 240 VAC (See note 2.)</td>
<td>5 to 24 VDC</td>
<td>G3NA-220B DC5-24</td>
</tr>
<tr>
<td>Photocoupler</td>
<td></td>
<td></td>
<td></td>
<td>100 to 120 VAC</td>
<td>G3NA-220B AC100-120</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200 to 240 VAC</td>
<td>G3NA-220B AC200-240</td>
</tr>
<tr>
<td>Phototriac Coupler</td>
<td>Yes</td>
<td></td>
<td>40 A at 24 to 240 VAC (See note 2.)</td>
<td>5 to 24 VDC</td>
<td>G3NA-240B DC5-24</td>
</tr>
<tr>
<td>Photocoupler</td>
<td></td>
<td></td>
<td></td>
<td>100 to 120 VAC</td>
<td>G3NA-240B AC100-120</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200 to 240 VAC</td>
<td>G3NA-240B AC200-240</td>
</tr>
<tr>
<td>Phototriac Coupler</td>
<td>Yes</td>
<td></td>
<td>75 A at 24 to 240 VAC (See note 2.)</td>
<td>5 to 24 VDC</td>
<td>G3NA-275B-UTU-2 DC5-24</td>
</tr>
<tr>
<td>Photocoupler</td>
<td></td>
<td></td>
<td></td>
<td>100 to 120 VAC</td>
<td>G3NA-275B-UTU-2 AC100-240</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>200 to 240 VAC</td>
<td>G3NA-275B-UTU-2 AC100-240</td>
</tr>
<tr>
<td>Phototriac Coupler</td>
<td>Yes</td>
<td></td>
<td>90 A at 24 to 240 VAC (See note 2.)</td>
<td>5 to 24 VDC</td>
<td>G3NA-290B-UTU-2 DC5-24</td>
</tr>
<tr>
<td>Photocoupler</td>
<td></td>
<td></td>
<td></td>
<td>100 to 240 VAC</td>
<td>G3NA-290B-UTU-2 AC100-240</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50 A at 200 to 480 VAC (See note 2.)</td>
<td>G3NA-410B DC5-24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100 to 240 VAC</td>
<td>G3NA-410B AC100-240</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20 A at 200 to 480 VAC</td>
<td>G3NA-420B DC5-24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100 to 240 VAC</td>
<td>G3NA-420B AC100-240</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40 A at 200 to 480 VAC</td>
<td>G3NA-440B-2 DC5-24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100 to 240 VAC</td>
<td>G3NA-440B-2 AC100-240</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>50 A at 200 to 480 VAC</td>
<td>G3NA-450B-2 DC5-24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100 to 240 VAC</td>
<td>G3NA-450B-2 AC100-240</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>75 A at 200 to 480 VAC</td>
<td>G3NA-475B-UTU-2 DC5-24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100 to 240 VAC</td>
<td>G3NA-475B-UTU-2 AC100-240</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>90 A at 200 to 480 VAC</td>
<td>G3NA-490B-UTU-2 DC5-24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100 to 240 VAC</td>
<td>G3NA-490B-UTU-2 AC100-240</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>10 A at 5 to 200 VDC</td>
<td>G3NA-D210B DC5-24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100 to 240 VAC</td>
<td>G3NA-D210B AC100-240</td>
</tr>
</tbody>
</table>

* The standard models are certified by UL and CSA. To order a TÜV-certified model for G3NA-205B/210B/220B/240B/D210B, add “-UTU” to the model number.

Note:
1. The applicable load is the value for when the SSR is used with silicon grease applied to the specified heat sink. The applicable load depends on the ambient temperature. Refer to Load Current vs. Ambient Temperature in Engineering Data on page 6.
2. Loss time increases under 75 VAC. (Refer to page 15.) Confirm operation with the actual load.
■ Accessories (Order Separately)
One-touch Mounting Plates

<table>
<thead>
<tr>
<th>Model</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>R99-12 FOR G3NA</td>
<td></td>
</tr>
</tbody>
</table>

Heat Sinks

Slim Models Enabling DIN-track Mounting

<table>
<thead>
<tr>
<th>Model</th>
<th>Applicable SSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y92B-N50</td>
<td>G3NA-205B, G3NA-210B, G3NA-D210B, G3NA-410B, G3NA-210T(L)</td>
</tr>
<tr>
<td>Y92B-N100</td>
<td>G3NA-220B, G3NA-420B, G3NA-220T(L)</td>
</tr>
<tr>
<td>Y92B-N150</td>
<td>G3NA-240B, G3NA-440B-2</td>
</tr>
<tr>
<td>Y92B-P250</td>
<td>G3NA-450B-2</td>
</tr>
<tr>
<td>Y92B-P250NF (See note.)</td>
<td>G3NA-275B-UTU-2, G3NA-290B-UTU-2, G3NA-475B-UTU-2, G3NA-490B-UTU-2</td>
</tr>
</tbody>
</table>

Note: The Y92B-P250NF is scheduled for release on May 1, 2004.

Mounting Bracket

<table>
<thead>
<tr>
<th>Model</th>
<th>Applicable SSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>R99-11</td>
<td>G3NA-240B, G3NA-440B(-2)</td>
</tr>
</tbody>
</table>

Low-cost Models

<table>
<thead>
<tr>
<th>Model</th>
<th>Applicable SSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y92B-A100</td>
<td>G3NA-205B, G3NA-210B, G3NA-D210B, G3NA-220B, G3NA-410B, G3NA-420B</td>
</tr>
<tr>
<td>Y92B-A150N</td>
<td>G3NA-240B-2, G3NA-440B-2</td>
</tr>
<tr>
<td>Y92B-A250</td>
<td>G3NA-440B-2</td>
</tr>
</tbody>
</table>
Specifications

Ratings

Input (at an Ambient Temperature of 25°C)

<table>
<thead>
<tr>
<th>Model</th>
<th>Rated voltage</th>
<th>Operating voltage</th>
<th>Impedance (See note 1.)</th>
<th>Voltage level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Must operate voltage</td>
</tr>
<tr>
<td>G3NA-2B</td>
<td>5 to 24 VDC</td>
<td>4 to 32 VDC</td>
<td>7 mA max. (See note 2.)</td>
<td>4 VDC max.</td>
</tr>
<tr>
<td></td>
<td>100 to 120 VAC</td>
<td>75 to 132 VAC</td>
<td>36 kΩ±20% (See note 4.)</td>
<td>75 VAC max. (See note 3.)</td>
</tr>
<tr>
<td></td>
<td>200 to 240 VAC</td>
<td>150 to 264 VAC</td>
<td>72 kΩ±20%</td>
<td>150 VAC max. (See note 3.)</td>
</tr>
<tr>
<td>G3NA-4B</td>
<td>5 to 24 VDC</td>
<td>4 to 32 VDC</td>
<td>5 mA max. (See note 2.)</td>
<td>4 VDC max.</td>
</tr>
<tr>
<td>G3NA-D210B</td>
<td>5 to 24 VDC</td>
<td>4 to 32 VDC</td>
<td>5 mA max. (See note 2.)</td>
<td>4 VDC max.</td>
</tr>
<tr>
<td>G3NA-275B-UTU-2</td>
<td>5 to 24 VDC</td>
<td>4 to 32 VDC</td>
<td>15 mA max.</td>
<td>4 VDC max.</td>
</tr>
<tr>
<td>G3NA-290B-UTU-2</td>
<td>5 to 24 VDC</td>
<td>4 to 32 VDC</td>
<td>15 mA max.</td>
<td>4 VDC max.</td>
</tr>
<tr>
<td>G3NA-475B-UTU-2</td>
<td>5 to 24 VDC</td>
<td>4 to 32 VDC</td>
<td>7 mA max.</td>
<td>4 VDC max.</td>
</tr>
<tr>
<td>G3NA-490B-UTU-2</td>
<td>5 to 24 VDC</td>
<td>4 to 32 VDC</td>
<td>7 mA max.</td>
<td>4 VDC max.</td>
</tr>
</tbody>
</table>

Note:
1. The input impedance is measured at the maximum value of the rated supply voltage (for example, with the model rated at 100 to 120 VAC, the input impedance is measured at 120 VAC).
2. With constant current input circuit system. The impedance for the G3NA-2B-UTU is 15 mA max.
3. Refer to **Temperature Characteristics (for Must Operate Voltage and Must Release Voltage)** in **Engineering Data** on page 7 for further details.
4. The G3NA-240B(-UTU) is 72kΩ±20%.
5. The G3NA-240B(-UTU) is 20 VAC min.

Output

<table>
<thead>
<tr>
<th>Model</th>
<th>Rated load voltage</th>
<th>Load voltage range</th>
<th>Load current (See note 1.)</th>
<th>Inrush current</th>
<th>V_{DRM}, V_{CEO} (reference value)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>With heat sink (See note 2.)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Without heat sink</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G3NA-205B</td>
<td>24 to 240 VAC</td>
<td>19 to 264 VAC</td>
<td>0.1 to 5 A (at 40°C)</td>
<td>60 A (60 Hz, 1 cycle)</td>
<td>600 V (V_{DRM})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1 to 3 A (at 40°C)</td>
<td>60 A (60 Hz, 1 cycle)</td>
<td></td>
</tr>
<tr>
<td>G3NA-210B</td>
<td>24 to 240 VAC</td>
<td>19 to 264 VAC</td>
<td>0.1 to 10 A (at 40°C)</td>
<td>150 A (60 Hz, 1 cycle)</td>
<td>1,200 V (V_{DREX})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1 to 4 A (at 40°C)</td>
<td>150 A (60 Hz, 1 cycle)</td>
<td></td>
</tr>
<tr>
<td>G3NA-220B</td>
<td>24 to 240 VAC</td>
<td>19 to 264 VAC</td>
<td>0.1 to 20 A (at 40°C)</td>
<td>220 A (60 Hz, 1 cycle)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1 to 4 A (at 40°C)</td>
<td>220 A (60 Hz, 1 cycle)</td>
<td></td>
</tr>
<tr>
<td>G3NA-240B</td>
<td>24 to 240 VAC</td>
<td>19 to 264 VAC</td>
<td>0.1 to 40 A (at 40°C)</td>
<td>440 A (60 Hz, 1 cycle)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1 to 6 A (at 40°C)</td>
<td>440 A (60 Hz, 1 cycle)</td>
<td></td>
</tr>
<tr>
<td>G3NA-410B</td>
<td>200 to 480 VAC</td>
<td>180 to 528 VAC</td>
<td>0.2 to 10 A (at 40°C)</td>
<td>150 A (60 Hz, 1 cycle)</td>
<td>1,200 V (V_{DREX})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.2 to 4 A (at 40°C)</td>
<td>150 A (60 Hz, 1 cycle)</td>
<td></td>
</tr>
<tr>
<td>G3NA-420B</td>
<td>24 to 240 VAC</td>
<td>19 to 264 VAC</td>
<td>0.2 to 20 A (at 40°C)</td>
<td>220 A (60 Hz, 1 cycle)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.2 to 4 A (at 40°C)</td>
<td>220 A (60 Hz, 1 cycle)</td>
<td></td>
</tr>
<tr>
<td>G3NA-440B-2</td>
<td>24 to 240 VAC</td>
<td>19 to 264 VAC</td>
<td>0.2 to 40 A (at 40°C)</td>
<td>440 A (60 Hz, 1 cycle)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.2 to 6 A (at 40°C)</td>
<td>440 A (60 Hz, 1 cycle)</td>
<td></td>
</tr>
<tr>
<td>G3NA-D210B</td>
<td>5 to 200 VDC</td>
<td>4 to 220 VDC</td>
<td>0.1 to 10 A (at 40°C)</td>
<td>20 A (10 ms)</td>
<td>400 V (V_{CEO})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.1 to 4 A (at 40°C)</td>
<td>20 A (10 ms)</td>
<td></td>
</tr>
<tr>
<td>G3NA-275B-UTU-2</td>
<td>24 to 240 VAC</td>
<td>19 to 264 VAC</td>
<td>1 to 75 A (at 40°C)</td>
<td>800 A (60 Hz, 1 cycle)</td>
<td>1,200 V (V_{DREX})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 to 7 A (at 40°C)</td>
<td>800 A (60 Hz, 1 cycle)</td>
<td></td>
</tr>
<tr>
<td>G3NA-290B-UTU-2</td>
<td>24 to 240 VAC</td>
<td>19 to 264 VAC</td>
<td>1 to 90 A (at 40°C)</td>
<td>1,000 A (60 Hz, 1 cycle)</td>
<td>1,200 V (V_{DREX})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 to 7 A (at 40°C)</td>
<td>1,000 A (60 Hz, 1 cycle)</td>
<td></td>
</tr>
<tr>
<td>G3NA-475B-UTU-2</td>
<td>200 to 480 VAC</td>
<td>180 to 528 VAC</td>
<td>1 to 75 A (at 40°C)</td>
<td>800 A (60 Hz, 1 cycle)</td>
<td>1,200 V (V_{DREX})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 to 7 A (at 40°C)</td>
<td>800 A (60 Hz, 1 cycle)</td>
<td></td>
</tr>
<tr>
<td>G3NA-490B-UTU-2</td>
<td>200 to 480 VAC</td>
<td>180 to 528 VAC</td>
<td>1 to 90 A (at 40°C)</td>
<td>1,000 A (60 Hz, 1 cycle)</td>
<td>1,200 V (V_{DREX})</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 to 7 A (at 40°C)</td>
<td>1,000 A (60 Hz, 1 cycle)</td>
<td></td>
</tr>
</tbody>
</table>

Note:
1. The load current varies depending on the ambient temperature. Refer to **Load Current vs. Ambient Temperature** under **Engineering Data** on page 6.
2. When an OMRON Heat Sink (refer to **Options**) or a heat sink of the specified size is used.
Characteristics

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Operate time</td>
<td>1/2 of load power source cycle + 1 ms max. (DC input)</td>
<td>3/2 of load power source cycle + 1 ms max. (AC input)</td>
<td>1 ms max. (DC input)</td>
<td>30 ms max. (AC input)</td>
<td>1/2 of load power source cycle + 1 ms max. (DC input)</td>
<td>3/2 of load power source cycle + 1 ms max. (AC input)</td>
<td>1/2 of load power source cycle + 1 ms max. (DC input)</td>
<td>3/2 of load power source cycle + 1 ms max. (AC input)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Release time</td>
<td>1/2 of load power source cycle + 1 ms max. (DC input)</td>
<td>3/2 of load power source cycle + 1 ms max. (AC input)</td>
<td>5 ms max. (DC input)</td>
<td>30 ms max. (AC input)</td>
<td>1/2 of load power source cycle + 1 ms max. (DC input)</td>
<td>3/2 of load power source cycle + 1 ms max. (AC input)</td>
<td>1/2 of load power source cycle + 1 ms max. (DC input)</td>
<td>3/2 of load power source cycle + 1 ms max. (AC input)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output ON voltage drop</td>
<td>1.6 V (RMS) max.</td>
<td>1.8 V (RMS) max.</td>
<td>1.5 V max.</td>
<td>1.6 V (RMS) max.</td>
<td>1.8 V (RMS) max.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leakage current</td>
<td>5 mA max. (at 100 VAC)</td>
<td>10 mA max. (at 200 VAC)</td>
<td>10 mA max. (at 100 VAC)</td>
<td>20 mA max. (at 400 VAC)</td>
<td>5 mA max. (at 200 VDC)</td>
<td>5 mA max. (at 200 VAC)</td>
<td>10 mA max. (at 200 VAC)</td>
<td>20 mA max. (at 400 VAC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulation resistance</td>
<td>100 MΩ min. (at 500 VDC)</td>
<td>2,500 VAC, 50/60 Hz for 1 min</td>
<td>4,000 VAC, 50/60 Hz for 1 min</td>
<td></td>
</tr>
<tr>
<td>Dielectric strength</td>
<td>2,500 VAC, 50/60 Hz for 1 min</td>
<td>4,000 VAC, 50/60 Hz for 1 min</td>
<td></td>
</tr>
<tr>
<td>Vibration resistance</td>
<td>Destruction: 10 to 55 to 10 Hz, 0.75-mm single amplitude (1.5-mm double amplitude)</td>
<td>Destruction: 10 to 55 to 10 Hz, 0.75-mm single amplitude (1.5-mm double amplitude)</td>
<td></td>
</tr>
<tr>
<td>Shock resistance</td>
<td>Destruction: 1,000 m/s²</td>
<td>Destruction: 1,000 m/s²</td>
<td></td>
</tr>
<tr>
<td>Ambient temperature</td>
<td>Operating: –30°C to 80°C (with no icing or condensation)</td>
<td>Operating: –30°C to 80°C (with no icing or condensation)</td>
<td></td>
</tr>
<tr>
<td>Ambient humidity</td>
<td>Operating: 45% to 85%</td>
<td>Operating: 45% to 85%</td>
<td></td>
</tr>
<tr>
<td>Weight</td>
<td>Approx. 60 g</td>
<td>Approx. 70 g</td>
<td>Approx. 80 g</td>
<td>Approx. 70 g</td>
<td>Approx. 120 g</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Load Current vs. Ambient Temperature

G3NA-205B

- With standard heat sink (Y92B-A100 or Y92B-N100), or aluminum plate measuring 75 mm x 75 mm x 0.8 mm (W x H x T).
- Without heat sink.

G3NA-210B/410B

- With standard heat sink (Y92B-A100 or Y92B-N100), or aluminum plate measuring 100 mm x 100 mm x 0.8 mm (W x H x T).
- Without heat sink.

G3NA-220B/420B

- With standard heat sink (Y92B-A100 or Y92B-N100), or aluminum plate measuring 200 mm x 200 mm x 0.8 mm (W x H x T).
- Without heat sink.

G3NA-240B

- With standard heat sink (Y92B-A150N or Y92B-N150), or iron plate measuring 150 mm x 150 mm x 0.8 mm (W x H x T).
- Without heat sink.

G3NA-400B-2

- With standard heat sink (Y92B-A250N or Y92B-N250), or heat sink with a radiation efficiency of 1°C/W.
- Without heat sink.

G3NA-450B-2

- With standard heat sink (Y92B-P250) or aluminum plate measuring 200 mm x 200 mm x 0.8 mm (W x H x T).
- Without heat sink.

G3NA-275B-UTU-2

- 0.6°C/W with Heat Sink.
- Using the Y92B-P250NF.
- Without heat sink.

G3NA-290B-UTU-2

- 0.3°C/W with Heat Sink.
- Using the Y92B-P250NF.
- Without heat sink.

G3NA-490B-UTU-2

- Without heat sink.

G3NA-D210B

- Without heat sink.

Note: The ambient operating temperature of the Y92B-P250NF is –30 to 70°C. Be sure the operating temperature is within this range.
One Cycle Surge Current

The values shown by the solid line are for non-repetitive inrush currents. Keep the inrush current below the values shown by the dotted line if it occurs repetitively.

Temperature Characteristics (for Must Operate Voltage and Must Release Voltage)

Heat Sink Area vs. Load Current

Note: The heat sink area refers to the combined area of the sides of the heat sink that radiate heat. For example, when a current of 18 A is allowed to flow through the SSR at 40°C, the graph shows that the heat sink area is about 450 cm². Therefore, if the heat sink is square, one side of the heat sink must be 15 cm (\(\sqrt{450\text{cm}^2}/2\)) or longer.

Thermal Resistance Rth (Back of Junction SSR) (Examples)

<table>
<thead>
<tr>
<th>Model</th>
<th>Rth (°C/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>G3NA-205B</td>
<td>3.22</td>
</tr>
<tr>
<td>G3NA-210B</td>
<td>2.62</td>
</tr>
<tr>
<td>G3NA-220B</td>
<td>1.99</td>
</tr>
<tr>
<td>G3NA-240B</td>
<td>0.45</td>
</tr>
<tr>
<td>G3NA-275B-UTU-2</td>
<td>0.45</td>
</tr>
<tr>
<td>G3NA-475B-UTU-2</td>
<td></td>
</tr>
<tr>
<td>G3NA-290B-UTU-2</td>
<td></td>
</tr>
<tr>
<td>G3NA-490B-UTU-2</td>
<td></td>
</tr>
<tr>
<td>G3NA-D210B</td>
<td>2.62</td>
</tr>
</tbody>
</table>

Thermal Resistance Rth of Heat Sinks (Examples)

<table>
<thead>
<tr>
<th>Model</th>
<th>Rth (°C/W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y92B-N50</td>
<td>2.8</td>
</tr>
<tr>
<td>Y92B-N100</td>
<td>1.63</td>
</tr>
<tr>
<td>Y92B-N150</td>
<td>1.38</td>
</tr>
<tr>
<td>Y92B-A100</td>
<td>1.63</td>
</tr>
<tr>
<td>Y92B-A150N</td>
<td>1.37</td>
</tr>
<tr>
<td>Y92B-A250</td>
<td>1.00</td>
</tr>
<tr>
<td>Y92B-P250NF</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Note: When using a commercially available heat sink, use one with a thermal resistance equal to or less that the OMRON Heat Sink.
Dimensions

Relays

Note: All units are in millimeters unless otherwise indicated.

G3NA-D210B, G3NA-205B, G3NA-210B, G3NA-220B

- 47.5 mm x 44 mm
- 25 mm max.
- 27 mm max.
- 11.9 mm
- 4.5 mm dia.
- Four, M4 x 8 screws
- Operating indicator

Note: The load can be connected to either the positive or negative side.

G3NA-240B, G3NA-275B-UTU-2, G3NA-290B-UTU-2, G3NA-440B-2, G3NA-475B-UTU-2, G3NA-490B-UTU-2

- 47.5 mm x 44 mm
- 30 mm max.
- 18.9 mm
- 28 mm max.
- 11.9 mm
- 4.5 mm dia.
- Two, M5 x 12 screws
- Operating indicator

G3NA-410B, G3NA-420B

- 47.5 mm x 44 mm
- 28 mm max.
- 11.9 mm
- 4.5 mm dia.
- Four, M4 x 8 screws
- Operating indicator

Mounting Holes

(Same for all models.)

Terminal Arrangement/ Internal Connections

(Top View)

DC load

(G3NA-D210B-UTU) only

1. Load power supply
2. Load
3. Input
4. (-)
5. (+)

AC load

(All models except those given on the left.)

1. Load power supply
2. Load
3. Input
4. (-)
5. (+)

Note: When connecting the load, either the positive or negative side of the load terminals can be connected.
Options (Order Separately)

One-touch Mounting Plate
The One-touch Mounting Plate is used to mount the GN3A to a DIN Track.

R99-12 FOR G3NA (for the G3NA and G3NE)
When a Relay is mounted to DIN Track, use it within the rating for a Relay without a heat sink.
Use the following DIN Tracks: PFP-100N or PFP-100N2.

To mount the Relay to DIN Track, first mount it to the One-touch Mounting Plate and then attach it to the DIN Track as shown in the diagram.

To remove the Relay from the DIN Track, pull down on the tab with a screwdriver in the direction of the arrow.

• When a Relay is mounted to DIN Track, use it within the rating for a Relay without a heat sink.
• Use the following DIN Tracks: PFP-100N or PFP-100N2.

Mounting Bracket
R99-11 (for the G3NA-240B, G3NA-440B-2)
Use Mounting Bracket R99-11 so that the G3NA-240B/-440B can be mounted with the same pitch as that of the G3N-240B.

Heat Sinks
Y92B-N50 Heat Sink (for the G3NA-205B, G3NA-210B, G3NA-D210B, G3NA-410B, G3NE-210T(L))
For surface mounting, a 30% derating of the load current is required (from the Load Current vs. Ambient Temperature graphs). For mounting method, refer to "Precautions for Correct Use".

Mounting Holes
Two, 4.4-dia. or M4 holes

Weight: approx. 200 g

Mounting Holes
Two, M3 holes
Two, M4 holes

To mount the Relay to DIN Track, first mount it to the One-touch Mounting Plate and then attach it to the DIN Track as shown in the diagram.

To remove the Relay from the DIN Track, pull down on the tab with a screwdriver in the direction of the arrow.

• When a Relay is mounted to DIN Track, use it within the rating for a Relay without a heat sink.
• Use the following DIN Tracks: PFP-100N or PFP-100N2.
Y92B-N100 Heat Sink (for the G3NA-220B, G3NA-420B, G3NE-220T(L))
For surface mounting, a 30% derating of the load current is required (from the Load Current vs. Ambient Temperature graphs).
For mounting method, refer to “Precautions for Correct Use”.

Y92B-N150 Heat Sink (for the G3NA-240B, G3NA-440B-2)
For surface mounting, a 30% derating of the load current is required (from the Load Current vs. Ambient Temperature graphs).
For mounting method, refer to “Precautions for Correct Use”.

Y92B-P250NF Heat Sink (for the G3NA-275B-UTU(-2), G3NA-475B-UTU(-2), G3NA-290B-UTU(-2), G3NA-490B-UTU(-2))
For mounting method, refer to “Precautions for Correct Use”.

For mounting method, refer to "Precautions for Correct Use".
Y92B-P250

Y92B-A100 Heat Sink
(for the G3NA-205B, G3NA-210B, G3NA-220B, G3NA-410B, G3NA-420B, G3NA-D210B)

Y92B-A150N Heat Sink
(for the G3NA-240B, G3NA-440B-2)

Y92B-A250 Heat Sink
(for the G3NA-440B-2)

For mounting, refer to "Precautions for Correct Use".

For surface mounting, a 30% derating of the load current is required (from the Load Current vs. Ambient Temperature graphs). For mounting method, refer to "Precautions for Correct Use".
Safety Precautions

Refer to Safety Precautions for All Solid State Relays.

CAUTION

Touching the charged section may occasionally cause minor electric shock. Do not touch the G3NA terminal section (the charged section) when the power supply is ON. Be sure to attach the cover before use.

CAUTION

The G3NA and heat sink will be hot and may occasionally cause minor burns. Do not touch the G3NA or the heat sink either while the power supply is ON, or immediately after the power is turned OFF.

CAUTION

The internal snubber circuit is charged and may occasionally cause minor electric shock. Do not touch the G3NA’s main circuit terminals immediately after the power is turned OFF.

CAUTION

Be sure to conduct wiring with the power supply turned OFF, and always attach the terminal cover after completing wiring. Touching the terminals when they are charged may occasionally result in minor electric shock.

CAUTION

Do not apply a short-circuit to the load side of the G3NA. The G3NA may rupture. To protect against short-circuit accidents, install a protective device, such as a quick-burning fuse, on the power supply line.

Precautions for Safe Use

Although OMRON continuously strives to improve the quality and reliability of our relays, the G3NA contains semiconductors, which are generally prone to occasional malfunction and failure. Maintaining safety is particularly difficult if a relay is used outside of its ratings. Always use the G3NA within the rated values. When using the G3NA, always design the system to ensure safety and prevent human accidents, fires, and social damage even in the event of G3NA failure, including system redundancy; measures to prevent fires from spreading, and designs to prevent malfunction.

1. **G3NA malfunction or fire damage may occasionally occur.** Do not apply excessive voltage or current to the G3NA terminals.

2. **Heat Dissipation**
 - Do not obstruct the airflow to the G3NA or heat sink. Heat generated by a terminal error may occasionally cause the output element to short, or cause fire damage.
 - Be sure to prevent the ambient temperature from rising due to the heat generation of the G3NA. If the G3NA is mounted inside a panel, install a fan so that the interior of the panel is fully ventilated.
 - Mount the G3NA in the specified orientation. If the G3NA is mounted in any other orientation, abnormal heat generation may cause output elements to short or may cause burning.
 - Do not use the G3NA if the heat sink fins are bent, e.g., as the result of dropping the G3NA. Heat dissipation characteristics will be reduced, possibly causing G3NA failure.
 - Apply a thin layer of Momentive Performance Materials’ Y92B-P250NF, or Shin-Etsu Chemical’s G747, or a similar product to the heat sink before mounting.
 - If a material with high thermal resistance, such as wood, is used, heat generated by the G3NA may occasionally cause fire or burning. When installing the G3NA directly into a control panel so that the panel can be used as a heat sink, use a panel material with low thermal resistance, such as aluminum or steel.
 - Use the specified heat sink or one with equivalent or better characteristics.

3. **Wire the G3NA and tighten screws correctly, observing the following precautions**
 - Heat generated by a terminal error may occasionally result in fire damage. Do not operate if the screws on the output terminal are loose.
 - Abnormal heat generated by wires may occasionally result in fire damage. Use wires suitable for the load current.
 - Abnormal heat generated by terminals may occasionally result in fire damage. Do not operate if the screws on the output terminal are loose.

 Tightening Torque

<table>
<thead>
<tr>
<th>Screw size</th>
<th>Tightening torque</th>
</tr>
</thead>
<tbody>
<tr>
<td>M4</td>
<td>1.2 N m</td>
</tr>
<tr>
<td>M5</td>
<td>2.0 N m</td>
</tr>
</tbody>
</table>

 - Abnormal heat generated by terminals may occasionally result in fire damage. When tightening terminal screws, be sure that no non-conductive foreign matter is caught in screw.
 - For G3NA Relays of 40 A or higher, use crimp terminals of an appropriate size for the wire diameter for M5 terminals.
 - Do not use any wires with damaged sheaths. These may cause electric shock or leakage.
 - Do not place wiring in the same conduit or duct as high-voltage lines. Induction may cause malfunction or damage.
 - Use wires of an appropriate length, otherwise malfunction and damage may result due to induction.
 - Mount the DIN Track securely. Otherwise, the DIN Track may fall.
 - Be sure that the G3NA clicks into place when mounting it to DIN Track. The G3NA may fall if it is not mounted correctly.
 - Do not mount the G3NA when your hands are oily or dirty, e.g., with metal powder. These may cause G3NA failure.
 - Tighten the G3NA screws securely.
 - Tightening torque: 0.78 to 0.98 N m
 - Tighten the heat sink screws securely.
 - Tightening torque: 0.98 to 1.47 N m

4. **Preventing Overheating**
 - When using the High-capacity Heat Sink (Y92B-P250NF), always use a thermostat or other method to protect from overheating in the event that the fan stops.

5. **Do Not Touch Fan Blades**
 - When the fan is operating, do not touch the fan blades with any part of your body or allow foreign matter to come into contact with the blades. Always attach the enclosed finger guard when using the G3NA.

6. **Operating Conditions**
 - Only use the G3NA with loads that are within the rated values. Using the G3NA with loads outside the rated values may result in malfunction, damage, or burning.
 - Use a power supply within the rated frequency range. Using a power supply outside the rated frequency range may result in malfunction, damage, or burning.

7. **Do not transport the G3NA under the following conditions.** Failure or malfunction may occur.
 - Conditions under which the G3NA will be exposed to water
 - High temperatures or high humidity
 - Without proper packing

G3NA Malfunction or Fire Damage

- Heat dissipation
- System redundancy
- Measures to prevent fires from spreading
- Designs to prevent malfunction

Maintaining Safety

- System redundancy
- Measures to prevent fires from spreading
- Designs to prevent malfunction

Caution

- Do not touch the charged section
- Do not touch the G3NA or heat sink
- Do not apply a short-circuit to the load side of the G3NA
- Be sure to prevent the ambient temperature from rising
- Mount the G3NA in the specified orientation
- Use appropriate screws and tightening torque

Operating Conditions

- Use a power supply within the rated frequency range
- Use wires and terminals suitable for the load current

Precautions for Safe Use

- Do not transport the G3NA under the following conditions
- Do not transport the G3NA under high temperatures or high humidity
- Do not transport the G3NA without proper packing

OMRON

12
Operating and Storage Locations

Do not use or store the G3NA in the following locations. Doing so may result in damage, malfunction, or deterioration of performance characteristics.

- Do not use or store in locations subject to direct sunlight.
- Do not use in locations subject to ambient temperatures outside the range –20 to 60°C.
- Do not use in locations subject to relative humidity outside the range 45% to 85% or locations subject to condensation as the result of severe changes in temperature.
- Do not store in locations subject to ambient temperatures outside the range –30 to 70°C.
- Do not use or store in locations subject to corrosive or flammable gases.
- Do not use or store in locations subject to dust (especially iron dust) or salts.
- Do not use or store in locations subject to shock or vibration.
- Do not use or store in locations subject to exposure to water, oil, or chemicals.
- Do not use or store in locations subject to high temperatures or high humidity.
- Do not use or store in locations subject to salt damage.
- Do not use or store in locations subject to rain or water drops.

Precautions for Correct Use

Please observe the following precautions to prevent failure to operate, malfunction, or undesirable effect on product performance.

Before Actual Operation

1. The G3NA in operation may cause an unexpected accident. Therefore it is necessary to test the G3NA under the variety of conditions that are possible. As for the characteristics of the G3NA, it is necessary to consider differences in characteristics between individual SSRs.

2. Unless otherwise specified, the ratings in this catalog are tested values in a temperature range between 15°C and 30°C, a relative humidity range between 25% and 85%, and an atmospheric pressure range between 88 and 106 kPa (standard test conditions according to JIS C5442). It will be necessary to provide the above conditions as well as the load conditions if the user wants to confirm the ratings of specific G3NAs.

Mounting Method

Note: The same method in case not use heatsink.

SSR Mounting Pitch (Panel Mounting)
The correct mounting direction is vertical as below figure.

<table>
<thead>
<tr>
<th>Operating Conditions</th>
<th>Required number of fans per SSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Load current (A)</td>
<td>5 A</td>
</tr>
<tr>
<td>5 A</td>
<td>0.08</td>
</tr>
</tbody>
</table>

Example: For 10 SSRs with load currents of 10 A, 0.16 x 10 = 1.6
Thus, 2 fans would be required.

Size of fans: 92 mm², Air volume: 0.7 m³/min, Ambient temperature of control panel: 30°C

If there are other instruments that generate heat in the control panel other than SSRs, additional ventilation will be required.
High-capacity Heat Sink (Y92B-P250NF)

DIN-track Mounting

- Assembled DIN Tracks are heavy. Mount the DIN Tracks securely. Be sure that the Heat Sink is securely locked to the DIN Track.
- Attach End Plates (PFP-M, order separately) to both ends of the Units on the DIN Track to hold them in place.
- To mount a Heat Sink to a DIN Track, press down at the point indicated by arrow 1 in the diagram and then press in the Heat Sink at the point indicated by arrow 2.

Applicable DIN Track

Mounting is possible on TE35-15Fe (IEC 60715) DIN tracks. DIN tracks from the following manufacturers can be used.

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Thickness: 1.5 mm</th>
<th>Thickness: 2.3 mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schneider AM1-DE2000</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>WAGO 210-114 or 210-197</td>
<td>210-118</td>
<td>...</td>
</tr>
<tr>
<td>PHOENIX N35/15</td>
<td>N35/15/15-2.3</td>
<td>...</td>
</tr>
</tbody>
</table>

Direct Mounting

- Prepare mounting holes as shown in the diagram. Tightening torque: 0.98 to 1.47 Nm

- When mounting a Heat Sink directly, first remove the Fan Unit, then mount the Heat Sink by itself before attaching the Fan Unit again. (Remove the two screws shown in the following diagram.)

- First, temporarily mount the Heat Sink with the bottom two screws and then attach the top two screws with the mounting bracket sandwiched between the Heat Sink and mounting surface. Finally, tighten all four screws.

Ratings and Characteristics of High-capacity Heat Sink (Y92B-P250NF)

Fan Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated voltage</td>
<td>200 V</td>
</tr>
<tr>
<td>Operating voltage</td>
<td>85% to 110% of rated voltage</td>
</tr>
<tr>
<td>Frequency</td>
<td>50/60 Hz</td>
</tr>
<tr>
<td>Rated current (See note.)</td>
<td>0.061 A at 50 Hz</td>
</tr>
<tr>
<td>Rated speed (See note.)</td>
<td>2,600 r/min at 50 Hz</td>
</tr>
<tr>
<td></td>
<td>0.052 A at 60 Hz</td>
</tr>
<tr>
<td></td>
<td>3,050 r/min at 60 Hz</td>
</tr>
</tbody>
</table>

Note: Average values.

Thermostat Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating temperature</td>
<td>Approx. 90°C</td>
</tr>
<tr>
<td>Contact ratings</td>
<td>8 A at 250 VAC, resistive load</td>
</tr>
<tr>
<td></td>
<td>5 A at 30 VDC, resistive load</td>
</tr>
</tbody>
</table>

Fan Characteristics

- Use a commercial power supply (50/60 Hz) for the Fan.
- Be sure to turn OFF the power supply and wait for the blades to stop before inspecting the Fan.
- High-precision ball bearings are used in the fan and these may be damaged if the Fan is dropped or otherwise subjected to shock. The life and characteristics of the Fan will be reduced if the bearings are damaged. Do not subject the Fan to shock.
- The life of the Fan depends on the ambient temperature. As a guideline, the Fan life is 40,000 hours for continuous usage at 40°C.
- Be sure there are no objects near the air vents that would restrict air flow and no loose objects, such as electrical lines.
- The Fan is an OMRON R87F-A4A-93HP (200 VAC) Fan. Use the same model of Fan for replacement.
- The recommended tightening torque for the Fan is 0.44 Nm.
- Terminals equivalent to Faston #110 are used for the Fan power supply terminals.
- Refer to the following table for the OMRON Fan power supply plug cables (order separately).

<table>
<thead>
<tr>
<th>Cable length</th>
<th>UL certified</th>
<th>Complies with Electrical Appliance and Material Safety Law (Japan)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 m</td>
<td>R87F-PC</td>
<td>R87F-PCJT</td>
</tr>
<tr>
<td>2 m</td>
<td>R87F-PC-20</td>
<td>R87F-PCJT-20</td>
</tr>
</tbody>
</table>

- Connect the ground screw hole on the fan to PE.
Preventing Overheating with a High-capacity Heat Sink (Y92B-P250NF)

- When the High-capacity Heat Sink is used, high-capacity switching at 75 A or 90 A requires forced cooling with a fan. Connect the Fan to a power supply according to its ratings specifications.
- If the Fan stops due to a power supply error, due to foreign matter in the power supply connection, or due to aging, the Heat Sink will heat to high temperatures, possibly resulting in failure of the SSR or adverse affects on other devices. Implement an overheating prevention measure, such as turning OFF the load current, if the Heat Sink overheats.
- A thermostat is provided to detect overheating. The thermostat uses a NC contact, i.e., the circuit will be opened for overheating. This thermostat can be used to stop the operation of the SSR. Implement an overheating prevention measure by using this signal to output an alarm or perform another response applicable to the system. Also, confirm that there is no problem with the overall system.
- Do not connect the thermostat directly to the load power supply. Connect it to a contactor or other shutoff device connected above the SSR.
- Terminals equivalent to Faston #187 are used for the thermostat terminals.
- Do not use the ground terminal on the Fan.
- Do not connect the thermostat to the load power supply. Connect it to a contactor or other shutoff device connected above the SSR.
- Do not solder the thermostat terminals.
- Do not place heat-dissipating silicon grease on the thermostat.
- The following diagram shows a protective circuit example.

![Circuit Diagram](image)

Ventilating a High-capacity Heat Sink (Y92B-P250NF)

- Refer to Ventilation Outside the Control Panel.

Operating Conditions

- Do not apply currents exceeding the rated current otherwise, the temperature of the G3NA may rise excessively.
- As protection against accidents due to short-circuiting, be sure to install protective devices, such as fuses and no-fuse breakers, on the power supply side.
- Do not apply overvoltages to the input circuit or output circuit. Failure or burning may result.
- Do not drop the G3NA or otherwise subject it to abnormal shock. Malfunction or failure may result.
- Keep the cooling system running continuously during the ON/OFF operation of the SSR. This is to allow residual heat to dissipate while the SSR is OFF. (Load current 75 A, 90 A models)
- The Y92B-P250NF is a Class 1 device.
- If compliance with EU standards is required, ground the Y92B-P250NF.
- Use the ground terminal on the Heat Sink. Screw size: M5 Tightening torque: 2 N·m Do not use the ground terminal on the fan.

EMC Directive Compliance (For -UTU type)

EMC directives can be complied with under the following conditions.

1. AC-switching models
 - A capacitor must be connected to the input power supply.
 - A capacitor, varistor and toroidal core must be connected to the load power supply.
 - The input cable must be less than 3 m.

2. DC-switching models
 - The input cable must be less than 3 m.

Loss Time

The loss time will increase when the G3NA is used at a low applied voltage or current. Be sure that this does not cause any problems.

Using DC Loads

For a DC or L load, a diode should be connected in parallel the load to absorb the counter electromotive force of the load.

Fuses

Connect a quick-break fuse in series with the load as a short-circuit protection measure. Use one of the fuses in the following table or one with equivalent or better characteristics.

<table>
<thead>
<tr>
<th>G3NA rated load current</th>
<th>Fuse model</th>
<th>Manufacturer</th>
<th>Applicable SSR</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 A</td>
<td>60LFF5</td>
<td>HINODE ELECTRIC CO., LTD.</td>
<td>G3NA-205B</td>
</tr>
<tr>
<td>6 A</td>
<td>60LFF8</td>
<td>G3NA-210B</td>
<td></td>
</tr>
<tr>
<td>10 A</td>
<td>6LFF10</td>
<td>G3NA-220B</td>
<td></td>
</tr>
<tr>
<td>15 A</td>
<td>6LFF15</td>
<td>G3NA-230B</td>
<td></td>
</tr>
<tr>
<td>20 A</td>
<td>6LFF20</td>
<td>G3NA-240B</td>
<td></td>
</tr>
<tr>
<td>25 A</td>
<td>6PFF25</td>
<td>G3NA-250B</td>
<td></td>
</tr>
<tr>
<td>30 A</td>
<td>6PFF30</td>
<td>G3NA-260B</td>
<td></td>
</tr>
<tr>
<td>40 A</td>
<td>50SHA40</td>
<td>G3NA-270B-UTU(2)</td>
<td></td>
</tr>
<tr>
<td>45 A</td>
<td>50SHA45</td>
<td>G3NA-280B-UTU(2)</td>
<td></td>
</tr>
<tr>
<td>50 A</td>
<td>50SHA50</td>
<td>G3NA-290B-UTU(2)</td>
<td></td>
</tr>
<tr>
<td>75 A</td>
<td>50SHA75</td>
<td>G3NA-300B-UTU(2)</td>
<td></td>
</tr>
<tr>
<td>80 A</td>
<td>50SHA80</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100 A</td>
<td>50SHB100</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Reverse Connection

The output terminal side of the G3NA-D210B is connected to a built-in diode to protect the SSR from damage that may result from reverse connection. The SSR, however, cannot withstand one minute or more if the wires are connected in reverse. Therefore, pay the utmost attention not to make polarity mistakes on the load side.

Installation and Mounting

- Mount the G3NA securely with screws. Keep the screws tightened to a torque of 0.78 to 0.98 N·m.
- Mount the Heat Sink securely with screws. Keep the screws tightened to a torque of 0.98 to 1.47 N·m.
Precautions on Operating and Storage Environments

1. Operating Ambient Temperature
The rated value for the ambient operating temperature of the G3NA is for when there is no heat build-up. For this reason, under conditions where heat dissipation is not good due to poor ventilation, and where heat may build up easily, the actual temperature of the G3NA may exceed the rated value resulting in malfunction or burning.

When using the G3NA, design the system to allow heat dissipation sufficient to stay below the **Load Current vs. Ambient Temperature** characteristic curve. Note also that the ambient temperature of the G3NA may increase as a result of environmental conditions (e.g., climate or air-conditioning) and operating conditions (e.g., mounting in an airtight panel).

2. Transportation
When transporting the G3NA, observe the following points. Not doing so may result in damage, malfunction, or deterioration of performance characteristics.

- Do not drop the G3NA or subject it to severe vibration or shock.
- Do not transport the G3NA if it is wet.
- Do not transport the G3NA under high temperatures or humidity.
- Do not transport the G3NA without packing it properly.

3. Vibration and Shock
Do not subject the G3NA to excessive vibration or shock. Otherwise the G3NA may malfunction and internal components may be deformed or damaged, resulting in failure of the G3NA to operate.

To prevent the G3NA from abnormal vibration, do not install the G3NA in locations or by means that will subject it to vibration from other devices, such as motors.

4. Solvents
Do not allow the G3NA or the resin portion of the Fan’s thermostat to come in contact with solvents, such as thinners or gasoline. Doing so will dissolve the markings on the G3NA.

5. Oil
Do not allow the G3NA terminal cover to come in contact with oil. Doing so will cause the cover to crack and become cloudy.

Operation

1. Leakage Current
A leakage current flows through a snubber circuit in the G3NA even when there is no power input. Therefore, always turn OFF the power to the input or load and check that it is safe before replacing or wiring the G3NA.

2. Screw Tightening Torque
Tighten the G3NA terminal screws properly. If the screws are not tight, the G3NA will be damaged by heat generated when the power is ON. Perform wiring using the specified tightening torque.

3. Handling Relays
Do not mount the G3NA when your hands are oily or dirty, e.g., with metal powder. These may cause G3NA failure.

4. Do Not Drop
Be careful not to drop a Relay or Heat Sink onto any part of your body while working. Injury may result. This is particularly true for the High-capacity Heat Sink (Y92B-P250NF), which weighs 2.5 kg.

ALL DIMENSIONS SHOWN ARE IN MILLIMETERS.
To convert millimeters into inches, multiply by 0.03937. To convert grams into ounces, multiply by 0.03527.

In the interest of product improvement, specifications are subject to change without notice.
Terms and Conditions Agreement

Read and understand this catalog.
Please read and understand this catalog before purchasing the products. Please consult your OMRON representative if you have any questions or comments.

Warranties.
(a) Exclusive Warranty. OMRON’s exclusive warranty is that the Products will be free from defects in materials and workmanship for a period of twelve months from the date of sale by OMRON (or such other period expressed in writing by OMRON). OMRON disclaims all other warranties, express or implied.
(b) Limitations. OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, ABOUT NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OF THE PRODUCTS. BUYER ACKNOWLEDGES THAT IT ALONE HAS DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR INTENDED USE.
OMRON further disclaims all warranties and responsibility of any type for claims or expenses based on infringement by the Products or otherwise of any intellectual property right. (c) Buyer Remedy. OMRON’s sole obligation hereunder shall be, at OMRON’s election, to (i) replace (in the form originally shipped with Buyer responsible for labor charges for removal or replacement thereof) the non-complying Product, (ii) repair the non-complying Product, or (iii) repay or credit Buyer an amount equal to the purchase price of the non-complying Product; provided that in no event shall OMRON be responsible for warranty, repair, indemnity or any other claims or expenses regarding the Products unless OMRON’s analysis confirms that the Products were properly handled, stored, installed and maintained and not subject to contamination, abuse, misuse or inappropriate modification. Return of any Products by Buyer must be approved in writing by OMRON before shipment. OMRON Companies shall not be liable for the suitability or unsuitability or the results from the use of Products in combination with any electrical or electronic components, circuits, system assemblies or any other materials or substances or environments. Any advice, recommendations or information given orally or in writing, are not to be construed as an amendment or addition to the above warranty. See http://www.omron.com/global/ or contact your OMRON representative for published information.

Liability Limitation:
OMRON COMPANIES SHALL NOT BE LIABLE FOR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, LOSS OF PROFITS OR PRODUCTION OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS, WHETHER SUCH CLAIM IS BASED IN CONTRACT, WARRANTY, NEGLIGENCE OR STRICT LIABILITY. Further, in no event shall liability of OMRON Companies exceed the individual price of the Product on which liability is asserted.

Suitability of Use.
OMRON Companies shall not be responsible for conformity with any standards, codes or regulations which apply to the combination of the Product in the Buyer’s application or use of the Product. At Buyer’s request, OMRON will provide applicable third party certification documents identifying ratings and limitations of use which apply to the Product. This information by itself is not sufficient for a complete determination of the suitability of the Product in combination with the end product, machine, system, or other application or use. Buyer shall be solely responsible for determining appropriateness of the particular Product with respect to Buyer’s application, product or system. Buyer shall take application responsibility in all cases. NEVER USE THE PRODUCT FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR PROPERTY OR IN LARGE QUANTITIES WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO ADDRESS THE RISKS, AND THAT THE OMRON PRODUCT(S) IS PROPERLY RATED AND INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.

Programmable Products.
OMRON Companies shall not be responsible for the user’s programming of a programmable Product, or any consequence thereof.

Performance Data.
Data presented in OMRON Company websites, catalogs and other materials is provided as a guide for the user in determining suitability and does not constitute a warranty. It may represent the result of OMRON’s test conditions, and the user must correlate it to actual application requirements. Actual performance is subject to the OMRON’s Warranty and Limitations of Liability.

Change in Specifications.
Product specifications and accessories may be changed at any time based on improvements and other reasons. It is our practice to change part numbers when published ratings or features are changed, or when significant construction changes are made. However, some specifications of the Product may be changed without any notice. When in doubt, special part numbers may be assigned to fix or establish key specifications for your application. Please consult with your OMRON’s representative at any time to confirm actual specifications of purchased Product.

Errors and Omissions.
Information presented by OMRON Companies has been checked and is believed to be accurate; however, no responsibility is assumed for clerical, typographical or proofreading errors or omissions.

OMRON Corporation
Industrial Automation Company
http://www.ia.omron.com/

In the interest of product improvement, specifications are subject to change without notice.

(c)Copyright OMRON Corporation 2016 All Right Reserved.